Properties Study Guide

Property	Structural Factors	Example	Application or
liopercy	affecting property	Example	biological
	arrecting property		relevance
Golubility (in test on test	Interaction between	Calubility	Micelle formation
Solubility (in water vs.		Solubility in	
oil)	molecules and solvent,	water:	in fatty acids,
	based on the following	CH ₃ CH ₂ CH ₂ CH ₂ ONa >	lipid bilayer
	forces in order of	CH ₃ CH ₂ CH ₂ CH ₂ OH >	formation,
	decreasing strength:	CH ₃ CH ₂ CH ₂ CH ₃	Protein folding
	covalent, ionic,		influenced by
	hydrogen bonding, ion-		nonpolar groups
	dipole, dipole-dipole,		and polar groups
	London. General		
	principle is like		
	dissolves like, meaning		
	nonpolar repels polar.		
	Rule of thumb: OH		
	solubilizes 3 C's, COOH		
	solubilizes 4 C's		
Ambiphilic compounds	As above, but large		
(soluble in water and oil)	molecule with very		
	different polarity		
Boiling point and	As with solubility, and		
volatility	including stacking of		
	molecules		
Melting point	As with solubility AND		Cholesterol, cis
	symmetry of molecule		fats affect
	which improves packing		membrane fluidity
	in crystal structures		
Absorption of visible and	Presence of conjugation.		DNA damage,
ultraviolet light	More conjugation means		photosynthesis,
	lower energy of		color of blood,
	absorption max moves		grass, urine;
	towards IR (i.e. IR		photobleaching of

	ROYGBIV UV)	paper, pigments
Optical rotation	Presence of chirality, meaning no plane of symmetry in the molecule.	Levo (L) (-) or Dextro (D) (+) in drug names, LCD, bird and fish vision, polarized sunglasses
Interaction with chiral molecules	Presence of chirality	Drug enantiomers, mint vs caraway and other flavors
Viscosity	Very long chains, interchain interaction as with melting and boiling points	Can measure DNA supercoiling by viscosity?
Acidity and Basicity	(Use pKa table to assess relative acidity) Aliphatic amines are more basic than aromatic amines, which are more basic than amides. Acidity of acids increases when electronegative groups are attached close to the COOH	

Molecules that can hydrogen bond to water are more soluble in water than those that can not.

Molecules that can hydrogen bond to each other have a higher boiling point and are less volatile than those that can not..

Charged molecules (i.e. salts) are more soluble in water than neutral molecules.

Charged molecules (i.e. salts) have a higher boiling point and are less volatile than neutral molecules.

The reaction of a base with a carboxylic acid changes a neutral R-COOH into a charged R-COO, thereby affecting solubility and volatility.

The reaction of an acid with an amine changes a neutral R-NH₂ into a charged R-NH₃⁺ (similar for 2° or 3° amine) thereby affecting solubility and volatility.

If the pH is greater than the pKa of an acid, the acid will be 99+% deprotonated; if the pH is equal to pKa it will be 50% protonated, if the pH is lower than pKa it will be 99+% protonated.

Quaternary amines are always positively charged at any pH.

Aliphatic amines are more basic than aromatic amines, which are much more basic than amides. Amides are only protonated by strong acids. The pKa's of the conjugate acids are: aliphatic 9.5, aromatic 3.5, amide -0.5

Small changes in chemical structure can result in large changes in bioactivity

"Natural" does not mean safe

Professor Charlie Abrams

Chem 212: Survey of Organic and Biochemistry

Amines taste bitter and have pungent or putrid odors Western medicine looks to traditional "folk" medicine for drug candidates The dose makes the poison

Structural Theory Study Guide

Items in italics have not been covered as of 9/22/06

Lewis Structures
VSEPR
Formal charge
Degree of hydrogen deficiency
Constitutional isomers
Functional groups
Cis-trans isomers in rings
Cis-trans isomers in double bonds
Newman projections and conformations
Chirality (R/S, D/L, +/-)
Fisher projections
Axial and equatorial positions in cyclohexane
Haworth projections