Key for Practice Quiz - Thermodynamics

1. D. condensation
2. E. -566.60 kJ
3. C. $\Delta \mathrm{G}^{\circ}=-2.90 \mathrm{~kJ}$; not forever
4. D. 28.4 kJ
5. C. 1.59×10^{-9}
6. (p. 892) For each of the following pairs, predict which (A or B) will have the greater entropy, and in one sentence indicate your reasoning.

	A	B
a. 1 mole of $\mathrm{HI}(\mathrm{g})$	1 mole of $\mathrm{HBr}(\mathrm{g})$	
b. 1 mole of $\mathrm{HI}(\mathrm{g})$ at $20^{\circ} \mathrm{C}$	1 mole of $\mathrm{HI}(\mathrm{g})$ at $30^{\circ} \mathrm{C}$	
c. 3 moles of $\mathrm{H} 2(\mathrm{~g})+1 \mathrm{~mole}$ of $\mathrm{N} 2(\mathrm{~g})$	2 moles of $\mathrm{NH} 3(\mathrm{~g})$	
d. 1 mole of $\mathrm{H} 2(\mathrm{~g})$, pressure $=1 \mathrm{~atm}$	1 mole of $\mathrm{H} 2(\mathrm{~g})$, pressure $=0.1 \mathrm{~atm}$	
e. 1 mole of $\mathrm{CO}(\mathrm{g})$	1 mole of $\mathrm{CO} 2(\mathrm{aq})$	
f. 1 mole of $\mathrm{HCOOH}(\mathrm{I})$	1 mole of $\mathrm{HCOOH}(\mathrm{aq})$	

a. A has greater entropy. HI and HBr are chemically similar, but HI has the higher molar mass.
b. B has greater entropy. At the higher temperature, the sample has greater energy and there are more ways to distribute this energy among the molecules in the sample.
c. A has greater entropy, as it has more moles of gas phase molecules.
d. B has greater entropy. At the lower pressure, the volume is larger and there is more positional disorder in the sample.
e. A has greater entropy. A substance has a greater entropy in the gas phase than in solution.
f. B has the greater entropy. When a solid or liquid dissolves, it has a greater volume available to it, and is thus more disordered.
7.
$\Delta H^{\circ}=-3271 \mathrm{~kJ}$
$\Delta S^{\circ}=-217 \mathrm{~J} / \mathrm{K}$
$\Delta G^{\circ}=-3206 \mathrm{~kJ}$
8. $K_{\mathrm{p}}=7.50$
9. $T=463 \mathrm{~K}$. The calculation is based on the assumption that ΔH° and ΔS° do not change significantly with change in temperature.
10. E. -41 kJ

