\qquad

1. Consider the following reaction:

$$
8 \mathrm{~A}(g)+5 \mathrm{~B}(g) \rightarrow 8 \mathrm{C}(g)+6 \mathrm{D}(g)
$$

If [C] is increasing at the rate of $4.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, at what rate is [B] changing?
a. $-0.40 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
b. $-2.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
c. $-4.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
d. $-6.4 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
e. None of these choices is correct, since its rate of change must be positive.
2. For the reaction:

$$
3 \mathrm{~A}(g)+2 \mathrm{~B}(g) \rightarrow 2 \mathrm{C}(g)+2 \mathrm{D}(g)
$$

the following data was collected at constant temperature. Determine the correct rate law for this reaction.

Trial	$\underline{\text { Initial [A] }} \quad$	$\underline{\text { Initial }[\mathrm{B}]}$	$\underline{\text { Initial Rate }}$
	$\underline{(\mathrm{mol} / \mathrm{L})}$	$\underline{(\mathrm{mol} / \mathrm{L})}$	$\underline{(\mathrm{mol} /(\mathrm{L} \cdot \mathrm{min}))}$
1	0.200	0.100	6.00×10^{-2}
2	0.100	0.100	1.50×10^{-2}
3	0.200	0.200	1.20×10^{-1}
4	0.300	0.200	2.70×10^{-1}

a. Rate $=k[\mathrm{~A}][\mathrm{B}]$
b. Rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$
c. Rate $=k[\mathrm{~A}]^{3}[\mathrm{~B}]^{2}$
d. Rate $=k[\mathrm{~A}]^{1.5}[\mathrm{~B}]$
e. Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
3. Tetrafluoroethylene, $\mathrm{C}_{2} \mathrm{~F}_{4}$, can be converted to octafluorocyclobutane which can be used as a refrigerant or an aerosol propellant. A plot of $1 /\left[\mathrm{C}_{2} \mathrm{~F}_{4}\right]$ vs. time gives a straight line with a slope of $0.0448 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. What is the rate law for this reaction?
a. Rate $=0.0448\left(\mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)\left[\mathrm{C}_{2} \mathrm{~F}_{4}\right]$
b. Rate $=22.3\left(\mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}\right)\left[\mathrm{C}_{2} \mathrm{~F}_{4}\right]$
c. Rate $=0.0448\left(\mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)\left[\mathrm{C}_{2} \mathrm{~F}_{4}\right]^{2}$
d. Rate $=22.3\left(\mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}\right)\left[\mathrm{C}_{2} \mathrm{~F}_{4}\right]^{2}$
e. Rate $=0.0448 \mathrm{~s}^{-1}\left[\mathrm{C}_{2} \mathrm{~F}_{4}\right]$
4. Cyclopropane is converted to propene in a first-order process. The rate constant is $5.4 \times 10^{-2} \mathrm{hr}^{-1}$. If the initial concentration of cyclopropane is 0.150 M , what will its concentration be after 22.0 hours?
a. $\quad 0.0457 \mathrm{M}$
b. $\quad 0.105 \mathrm{M}$
c. $\quad 0.127 \mathrm{M}$
d. $\quad 0.492 \mathrm{M}$
e. None of these choices is correct.
5. Butadiene, $\mathrm{C}_{4} \mathrm{H}_{6}$ (used to make synthetic rubber and latex paints) dimerizes to $\mathrm{C}_{8} \mathrm{H}_{12}$ with a rate law of rate $=0.014 \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{s})\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]^{2}$. What will be the concentration of $\mathrm{C}_{4} \mathrm{H}_{6}$ after 3.0 hours if the initial concentration is 0.025 M ?
a. $\quad 0.0052 \mathrm{M}$
b. $\quad 0.024 \mathrm{M}$
c. $\quad 43 \mathrm{M}$
d. $\quad 190 \mathrm{M}$
e. 0.0000 M
6. Dinitrogen tetraoxide, $\mathrm{N}_{2} \mathrm{O}_{4}$, decomposes to nitrogen dioxide, NO_{2}, in a first-order process. If $k=2.5 \times$ $10^{3} \mathrm{~s}^{-1}$ at $-5^{\circ} \mathrm{C}$ and $k=3.5 \times 10^{4} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$, what is the activation energy for the decomposition?
a. $\quad 0.73 \mathrm{~kJ} / \mathrm{mol}$
b. $\quad 58 \mathrm{~kJ} / \mathrm{mol}$
c. $\quad 140 \mathrm{~kJ} / \mathrm{mol}$
d. $\quad 580 \mathrm{~kJ} / \mathrm{mol}$
e. Greater than $1000 \mathrm{~kJ} / \mathrm{mol}$
7. Consider the following mechanism for the oxidation of bromide ions by hydrogen peroxide in aqueous acid solution.
$\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}^{+}-\mathrm{OH}$ (rapid equilibrium)
$\mathrm{H}_{2} \mathrm{O}^{+}-\mathrm{OH}+\mathrm{Br}^{-} \rightarrow \mathrm{HOBr}+\mathrm{H}_{2} \mathrm{O}$ (slow)
$\mathrm{HOBr}+\mathrm{H}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$ (fast)
Which of the following rate laws is consistent with the mechanism?
a. \quad Rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{Br}^{-}\right]$
b. Rate $=k\left[\mathrm{H}_{2} \mathrm{O}^{+}-\mathrm{OH}\right]\left[\mathrm{Br}^{-}\right]$
c. \quad Rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right]$
d. \quad Rate $=k[\mathrm{HOBr}]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
e. \quad Rate $=k\left[\mathrm{Br}^{-}\right]$
8. The gas-phase conversion of 1,3 -butadiene to 1,5 -cyclooctadiene, $2 \mathrm{C}_{4} \mathrm{H}_{6} \rightarrow \mathrm{C}_{8} \mathrm{H}_{12}$ was studied, providing data for the plot shown below, of $1 /[1,3$-butadiene $]$ versus time.
a. Explain how this plot confirms that the reaction is second order.
b. Calculate the second-order rate constant, k.
c. Determine the initial concentration of 1,3 -butadiene in this experiment.

9. At $25.0^{\circ} \mathrm{C}$, a rate constant has the value $5.21 \times 10^{-8} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. If the activation energy is $75.2 \mathrm{~kJ} / \mathrm{mol}$, calculate the rate constant when the temperature is $50.0^{\circ} \mathrm{C}$.
10. Cyclobutane decomposes to ethene in a first-order reaction. From measurements of the rate constant (k) at various absolute temperatures (T), the accompanying Arrhenius plot was obtained ($\ln k$ versus $1 / T$).
a. Calculate the energy of activation, E_{a}.
b. Determine the value of the rate constant at 740 . K. (In the plot, the units of k are s^{-1}.)

