Practice Quiz: Nuclear Chemistry

1. Who discove A. Geiger	red radioactivity? B. Curie	C. Roentgen	D. Becquerel	E. Rutherford
2. Which of the following types ofA. gamma emissionD. alpha emission		f radioactive decay does not produce new element? B. electron capture C. beta emission E. double beta emission		
3. In this equation ${}^{108}_{49}$ In $\rightarrow {}^{108}_{48}$ Cd + ?, what particle or type of radiation needs to be included on the right-hand side in order to balance it?				
A. alpha	B. beta	C. gamma	D. positron	E. proton
4. Which one of the following equations correctly represents positron decay of ${}^{40}_{19}$ K ? A. ${}^{40}_{19}$ K $\rightarrow {}^{35}_{17}$ Cl + ${}^{4}_{2}$ He B. ${}^{40}_{19}$ K + ${}^{0}_{-1}$ e $\rightarrow {}^{40}_{18}$ Ar C. ${}^{40}_{19}$ K + ${}^{0}_{-1}$ e $\rightarrow {}^{40}_{20}$ Ca D. ${}^{40}_{19}$ K $\rightarrow {}^{40}_{20}$ Ca + ${}^{-1}_{-1}\beta$ E. ${}^{40}_{19}$ K $\rightarrow {}^{40}_{20}$ Ca + ${}^{-1}_{-1}\beta$				
5. An isotope with a high value of N/Z will tend to decay through A. α decay. B. β decay. C. positron decay. D. electron capture. E. γ decay.				
6. An isotope with $Z > 83$, which lies close to the band of stability, will generally decay through A. α decay. B. β decay. C. γ decay. D. positron decay. E. electron capture.				
7. A scintillation counterA. measures the signal coming from an ionized gas.B. measures light emissions from excited atoms.C. depends on an avalanche of electrons generated as a particle moves through a tube of argon gas.D. detects high energy radiation better than low energy radiation.E. detects an electric current in a gas.				
8. A 7.85×10^{-5} mol sample of copper-61 emits 1.47×10^{19} positrons in 90.0 minutes. What is the decay constant for copper-61? A. 0.00230 h ⁻¹ B. 0.00346 h ⁻¹ C. 0.207 h ⁻¹ D. 0.311 h ⁻¹ E. None of these choices is correct.				
0. A 0.52 \times 10 ⁻⁵ mol semple of rubidium 86 emits 8.87 \times 10 ¹⁶ B particles in one hour. What is the helf life of rubidium 86?				

9. A 9.52×10^{-5} mol sample of rubidium-86 emits 8.87×10^{16} β particles in one hour. What is the half-life of rubidium-86? A. 2.23×10^{-3} h B. 1.55×10^{-3} h C. 448 h D. 645 h E. None of these choices is correct.

10. A pure sample of tritium, ³H, was prepared and sealed in a container for a number of years. Tritium undergoes β decay with a half-life of 12.32 years. How long has the container been sealed if analysis of the contents shows there are 5.25 mol of ³H and 6.35 mol of ³He present?A. 2.34 yB. 3.38 yC. 9.77 yD. 14.1 yE. 25.6 y

Answers

- 1. (p. 1066) D
- 2. (p. 1068) A
- 3. (p. 1069) D
- 4. (p. 1069) E
- 5. (p. 1071) B
- 6. (p. 1071) A
- 7. (p. 1075) B

8. (p. 1076) C

9. (p. 1076, 1077) C

10. (p. 1078) D