Ionic Equilibria

1. Equal volumes of the following pairs of solutions are mixed. Which pair will produce a buffer solution?

- A. $0.10 \text{ mol } \text{L}^{-1} \text{ HCl and } 0.05 \text{ mol } \text{L}^{-1} \text{ NaOH}$
- B. 0.10 mol L^{-1} HCl and 0.15 mol L^{-1} NH₃
- C. 0.10 mol L^{-1} HCl and 0.05 mol L^{-1} NH₃ D. 0.10 mol L^{-1} HCl and 0.20 mol L^{-1} CH₃COOH
- E. 0.10 mol L^{-1} HCl and 0.20 mol L^{-1} NaCl
- 2. Which of the following has the highest buffer capacity?
- A. $0.10 M H_2 PO_4^- / 0.10 M HPO_4^{2-}$
- B. 0.50 *M* H₂PO₄⁻/0.10 *M* HPO₄
- C. $0.10 M H_2 PO_4^{-}/0.50 M HPO_4^{2-}$
- D. 0.50 M H₂PO₄⁻/0.50 M HPO₄²⁻
- E. They all have the same buffer capacity.

3. A phosphate buffer $(H_2PO_4^{-}/HPO_4^{2-})$ has a pH of 8.3. Which of the following changes will cause the pH to increase?

- A. dissolving a small amount of Na₂HPO₄
- B. dissolving a small amount of NaH₂PO₄
- C. adding a small amount of dilute hydrochloric acid
- D. adding a small amount of dilute phosphoric acid
- E. making the buffer more concentrated by removing some water

4. What is the pH of a solution that consists of 0.50 $M H_2C_6H_6O_6$ (ascorbic acid) and 0.75 $M \text{ NaHC}_6H_6O_6$ (sodium ascorbate)? For ascorbic acid, $K_a = 6.8 \times 10^{-5}$ C. 4.34 A. 3.76 B. 3.99 D. 4.57 E. 5.66

5. A 20.0-mL sample of 0.30 M HBr is titrated with 0.15 M NaOH. What is the pH of the solution after 40.3 mL of NaOH have been added to the acid?

A. 2.95 C. 10.87 B. 3.13 D. 11.05 E. 13.14

6. A sample of a monoprotic acid (HA) weighing 0.384 g is dissolved in water and the solution is titrated with aqueous NaOH. If 30.0 mL of 0.100 M NaOH is required to reach the equivalence point, what is the molar mass of HA?

A. 37.0 g/mol B. 81.0 g/mol C. 128 g/mol D. 20.3 g/mol E. 211 g/mol

7. The solubility of magnesium phosphate is 2.27×10^{-3} g/1.0 L of solution. What is the K_{sp} for Mg₃(PO₄)₂? A. 6.5×10^{-12} B. 6.0×10^{-14} C. 5.2×10^{-24} D. 4.8×10^{-26} E. 1.0×10^{-26}

8. Use the following information to calculate the solubility product constant, K_{sp} , for CuCl. A saturated solution of CuCl in water was prepared and filtered. From the filtrate, 1.0 L was measured out into a beaker and evaporated to dryness. The solid CuCl residue recovered in the beaker was found to weigh 0.041g.

A. $K_{sp} = 1.7 \times 10^{-9}$ B. $K_{sp} = 1.7 \times 10^{-7}$ C. $K_{sp} = 1.7 \times 10^{-5}$ D. $K_{sp} = 4.3 \times 10^{-4}$ E. $K_{sp} = 2.1 \times 10^{-2}$

9. A solution is prepared by mixing 50.0 mL of $0.50 M \text{Cu}(\text{NO}_3)_2$ with 50.0 mL of $0.50 M \text{Co}(\text{NO}_3)_2$. Sodium hydroxide is added to the mixture. Which hydroxide precipitates first and what concentration of hydroxide ions present in solution will accomplish the separation?

 $K_{\rm sp} = 2.2 \times 10^{-20}$ for Cu(OH)₂, $K_{\rm sp} = 1.3 \times 10^{-15}$ for Co(OH)₂ A. Co(OH)₂; [OH⁻] = $6.9 \times 10^{-6} M$ B. Co(OH)₂; [OH⁻] = $2.6 \times 10^{-7} M$ C. Cu(OH)₂; [OH⁻] = $1.8 \times 10^{-7} M$ D. Cu(OH)₂; [OH⁻] = $1.1 \times 10^{-9} M$ E. Cu(OH)₂; [OH⁻] = $1.0 \times 10^{-17} M$

10. What is the maximum amount of sodium sulfate that can be added to 1.00 L of 0.0020 *M* Ca(NO₃)₂ before precipitation of calcium sulfate begins? $K_{sp} = 2.4 \times 10^{-5}$ for calcium sulfate

A. 1.2×10^{-2} mol B. 4.9×10^{-3} mol C. 3.5×10^{-3} mol D. 1.2×10^{-5} mol E. 4.8×10^{-8} mol