$\qquad$

1. Equal volumes of the following pairs of solutions are mixed. Which pair will produce a buffer solution?
A. $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ and $0.05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$
B. $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ and $0.15 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NH}_{3}$
C. $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ and $0.05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NH}_{3}$
D. $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ and $0.20 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CH}_{3} \mathrm{COOH}$
E. $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ and $0.20 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaCl}$
2. Which of the following has the highest buffer capacity?
A. $0.10 M \mathrm{H}_{2} \mathrm{PO}_{4}^{-} / 0.10 \mathrm{M} \mathrm{HPO}_{4}{ }^{2-}$
B. $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{PO}_{4}^{-} / 0.10 \mathrm{M} \mathrm{HPO}_{4}{ }^{2-}$
C. $0.10 M \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} / 0.50 M \mathrm{HPO}_{4}{ }^{2-}$
D. $0.50 M \mathrm{H}_{2} \mathrm{PO}_{4}^{-} / 0.50 M \mathrm{HPO}_{4}{ }^{2-}$
E. They all have the same buffer capacity.
3. A phosphate buffer $\left(\mathrm{H}_{2} \mathrm{PO}_{4}-/ \mathrm{HPO}_{4}{ }^{2-}\right)$ has a pH of 8.3. Which of the following changes will cause the pH to increase?
A. dissolving a small amount of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
B. dissolving a small amount of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
C. adding a small amount of dilute hydrochloric acid
D. adding a small amount of dilute phosphoric acid
E. making the buffer more concentrated by removing some water
4. What is the pH of a solution that consists of $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$ (ascorbic acid) and $0.75 \mathrm{M} \mathrm{NaHC}{ }_{6} \mathrm{H}_{6} \mathrm{O}_{6}$ (sodium ascorbate)? For ascorbic acid, $K_{\mathrm{a}}=6.8 \times 10^{-5}$
A. 3.76
B. 3.99
C. 4.34
D. 4.57
E. 5.66
5. A $20.0-\mathrm{mL}$ sample of 0.30 M HBr is titrated with 0.15 M NaOH . What is the pH of the solution after 40.3 mL of NaOH have been added to the acid?
A. 2.95
B. 3.13
C. 10.87
D. 11.05
E. 13.14
6. A sample of a monoprotic acid (HA) weighing 0.384 g is dissolved in water and the solution is titrated with aqueous NaOH . If 30.0 mL of 0.100 M NaOH is required to reach the equivalence point, what is the molar mass of HA?
A. $37.0 \mathrm{~g} / \mathrm{mol}$
B. $81.0 \mathrm{~g} / \mathrm{mol}$
C. $128 \mathrm{~g} / \mathrm{mol}$
D. $20.3 \mathrm{~g} / \mathrm{mol}$
E. $211 \mathrm{~g} / \mathrm{mol}$
7. The solubility of magnesium phosphate is $2.27 \times 10^{-3} \mathrm{~g} / 1.0 \mathrm{~L}$ of solution. What is the $K_{\text {sp }}$ for $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ ?
A. $6.5 \times 10^{-12}$
B. $6.0 \times 10^{-14}$
C. $5.2 \times 10^{-24}$
D. $4.8 \times 10^{-26}$
E. $1.0 \times 10^{-26}$
8. Use the following information to calculate the solubility product constant, $K_{\mathrm{sp}}$, for CuCl . A saturated solution of CuCl in water was prepared and filtered. From the filtrate, 1.0 L was measured out into a beaker and evaporated to dryness. The solid CuCl residue recovered in the beaker was found to weigh 0.041 g .
A. $K_{\text {sp }}=1.7 \times 10^{-9}$
B. $K_{\mathrm{sp}}=1.7 \times 10^{-7}$
C. $K_{\mathrm{sp}}=1.7 \times 10^{-5}$
D. $K_{\mathrm{sp}}=4.3 \times 10^{-4}$
E. $K_{\text {sp }}=2.1 \times 10^{-2}$
9. A solution is prepared by mixing 50.0 mL of $0.50 \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ with 50.0 mL of $0.50 \mathrm{M} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$. Sodium hydroxide is added to the mixture. Which hydroxide precipitates first and what concentration of hydroxide ions present in solution will accomplish the separation?
$K_{\text {sp }}=2.2 \times 10^{-20}$ for $\mathrm{Cu}(\mathrm{OH})_{2}, K_{\text {sp }}=1.3 \times 10^{-15}$ for $\mathrm{Co}(\mathrm{OH})_{2}$
A. $\mathrm{Co}(\mathrm{OH})_{2} ;\left[\mathrm{OH}^{-}\right]=6.9 \times 10^{-6} \mathrm{M}$
B. $\mathrm{Co}(\mathrm{OH})_{2} ;\left[\mathrm{OH}^{-}\right]=2.6 \times 10^{-7} \mathrm{M}$
C. $\mathrm{Cu}(\mathrm{OH})_{2} ;\left[\mathrm{OH}^{-}\right]=1.8 \times 10^{-7} \mathrm{M}$
D. $\mathrm{Cu}(\mathrm{OH})_{2} ;\left[\mathrm{OH}^{-}\right]=1.1 \times 10^{-9} \mathrm{M}$
E. $\mathrm{Cu}(\mathrm{OH})_{2} ;\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-17} \mathrm{M}$
10. What is the maximum amount of sodium sulfate that can be added to 1.00 L of $0.0020 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ before precipitation of calcium sulfate begins? $K_{\mathrm{sp}}=2.4 \times 10^{-5}$ for calcium sulfate
A. $1.2 \times 10^{-2} \mathrm{~mol}$
B. $4.9 \times 10^{-3} \mathrm{~mol}$
C. $3.5 \times 10^{-3} \mathrm{~mol}$
D. $1.2 \times 10^{-5} \mathrm{~mol}$
E. $4.8 \times 10^{-8} \mathrm{~mol}$
