Practice Quiz: Equilibrium

1. Consider the equilibrium reaction shown below.
$\mathrm{B}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{~B}(\mathrm{~g})$
If the rate constants are: $k_{\mathrm{fwd}}=7.00 \times 10^{-5} \mathrm{~s}^{-1}$ and $k_{\mathrm{rev}}=2.00 \times 10^{-5} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$, what is the value of K_{c} under these conditions?
© 1.75×10^{5}
(6 3.50
C 0.286

- 5.71×10^{-6}

C 1.40×10^{-10}
2. Which of the following has an effect on the magnitude of the equilibrium constant?

C removing products as they are formed
Q adding more of a reactant
. adding a catalyst
C increasing the pressure, in a gas-phase reaction
© change in temperature
3. The two equilibrium constants for the same reaction, K_{c} and K_{p}, will always equal one another when

C all of the reactants and products are gases.
6. in the reaction equation, the number of moles of gaseous products equals the number of moles of gaseous reactants.
C in the reaction equation, the number of moles of gaseous products is greater than the numbe of moles of gaseous reactants.
c in the reaction equation, the number of moles of gaseous products is smaller than the number of moles of gaseous reactants.
C in the reaction equation, the total number of moles of reactants equals that of the products.
4. The reaction quotient, Q_{c}, for a reaction has a value of 75 while the equilibrium constant, K_{c}, has a value of 195 . Which of the following statements is accurate?

C The reaction must proceed to the left to establish equilibrium.
© The reaction must proceed to the right to establish equilibrium.

- The concentrations of the products will be much smaller than the concentrations of the reactants when the system is at equilibrium.
C The concentrations of the products will be about the same as the concentrations of the reactants when the system is at equilibrium.
C None of these choices is correct.

5. Select the mass-action expression, Q_{c}, for the following chemical reaction equation.

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}(g)+15 \mathrm{O}_{2}(g) \Rightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

C $\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$

$$
\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]\left[\mathrm{O}_{2}\right]
$$

c $\left[\mathrm{CO}_{2}\right]^{12}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}$

$$
\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]^{2}\left[\mathrm{O}_{2}\right]^{15}
$$

C $\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]\left[\mathrm{O}_{2}\right]$
$\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
C $\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]^{2}\left[\mathrm{O}_{2}\right]^{15}$
$\left[\mathrm{CO}_{2}\right]^{12}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}$

- $\frac{\left[12 \mathrm{CO}_{2}\right]\left[6 \mathrm{H}_{2} \mathrm{O}\right]}{\left[2 \mathrm{C}_{6} \mathrm{H}_{6}\right]\left[15 \mathrm{O}_{2}\right]}$

6. The reaction of nitrogen with oxygen to form nitrogen monxide can be represented by the following equation.
$\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)$
At $2000^{\circ} \mathrm{C}$, the equilibrium constant, K_{c}, has a value of 4.10×10^{-4}. What is the value of K_{p} ?
C 2.17×10^{-8}
© 4.10×10^{-4}

- 7.65×10^{-2}
- 7.75

C None of these choices is correct.
7. At high temperatures, carbon reacts with O_{2} to produce CO as follows:
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow \mathrm{CO}(\mathrm{g})$. When 0.350 mol of O_{2} and excess carbon were placed in a $5.00-\mathrm{L}$ container and heated, the equilibrium concentration of CO was found to be 0.060 M . What is the equilibrium constant, K_{c}, for this reaction?

C 0.010

- 0.072
© 0.090
ค 0.17
(1.2

8. At a certain temperature the reaction $\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \Rightarrow \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ has $K_{\mathrm{c}}=2.50$. If 2.00 mol of carbon dioxide and 1.5 mol of hydrogen are placed in a 5.00 L vessel and equilibrium is established, what will be the concentration of carbon monoxide?

$$
\begin{array}{ll}
C & 0.091 \mathrm{M} \\
& 0.191 \mathrm{M} \\
\hdashline & 0.209 \mathrm{M} \\
0 & 0.913 \mathrm{M} \\
0 & 1.05 \mathrm{M}
\end{array}
$$

9. When 0.152 mol of solid $\mathrm{PH}_{3} \mathrm{BCl}_{3}$ is introduced into a 3.0 L container at a certain temperature, 8.44 $\times 10^{-3} \mathrm{~mol}$ of PH_{3} is present at equilibrium:
$\mathrm{PH}_{3} \mathrm{BCl}_{3}(\mathrm{~s}) \Rightarrow \mathrm{PH}_{3}(\mathrm{~g})+\mathrm{BCl}_{3}(\mathrm{~g})$
Construct a reaction table for the process, and use it to calculate K_{c} at this temperature.
$\mathrm{Kc}=\{[(8.44 \mathrm{X} 10 \mathrm{E}-3)] / 3.0\}^{\wedge} 2=7.9$
10. Consider the following gas-phase equilibrium reaction:
$\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g), K_{\mathrm{c}}=4.10 \times 10^{-4}$ at $2000^{\circ} \mathrm{C}$
If 1.0 mol of NO is introduced into a 1.0 L container at $2000^{\circ} \mathrm{C}$, what is the concentration of NO when equilibrium is reached?

$$
[\mathrm{NO}]=1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}
$$

