Practice Quiz: Equilibrium

1. Consider the equilibrium reaction shown below.

 $B_2(g) \implies 2B(g)$ If the rate constants are: $k_{\text{fwd}} = 7.00 \times 10^{-5} \text{ s}^{-1}$ and $k_{\text{rev}} = 2.00 \times 10^{-5} \text{ L mol}^{-1} \text{ s}^{-1}$, what is the value of K_c under these conditions?

- 1.75×10^5
- 3.50
- 0.286
- \odot 5.71 × 10⁻⁶
- 1.40×10^{-10}
- 2. Which of the following has an effect on the magnitude of the equilibrium constant?
 - c removing products as they are formed
 - o adding more of a reactant
 - adding a catalyst
 - increasing the pressure, in a gas-phase reaction
 - change in temperature
- 3. The two equilibrium constants for the same reaction, K_c and K_p , will always equal one another when
 - \bigcirc all of the reactants and products are gases.
 - in the reaction equation, the number of moles of gaseous products equals the number of moles of gaseous reactants.
 - in the reaction equation, the number of moles of gaseous products is greater than the number of moles of gaseous reactants.
 - in the reaction equation, the number of moles of gaseous products is smaller than the number of moles of gaseous reactants.
 - \bigcirc in the reaction equation, the total number of moles of reactants equals that of the products.
- 4. The reaction quotient, Q_c , for a reaction has a value of 75 while the equilibrium constant, K_c , has a value of 195. Which of the following statements is accurate?
 - The reaction must proceed to the left to establish equilibrium.
 - The reaction must proceed to the right to establish equilibrium.
 - C The concentrations of the products will be much smaller than the concentrations of the reactants when the system is at equilibrium.
 - The concentrations of the products will be about the same as the concentrations of the reactants when the system is at equilibrium.
 - None of these choices is correct.

Practice Quiz: Equilibrium

5. Select the mass-action expression, Q_c , for the following chemical reaction equation. $2C_6H_6(g) + 15O_2(g) \implies 12CO_2(g) + 6H_2O(g)$

- 6. The reaction of nitrogen with oxygen to form nitrogen monxide can be represented by the following equation.
 - $N_2(g) + O_2(g) \implies 2NO(g)$

At 2000°C, the equilibrium constant, K_c , has a value of 4.10×10^{-4} . What is the value of K_p ?

- $\sim 2.17 \times 10^{-8}$
- 4.10×10^{-4}
- \circ 7.65 × 10⁻²
- O 7.75
- None of these choices is correct.
- 7. At high temperatures, carbon reacts with O_2 to produce CO as follows:

 $C(s) + O_2(g) \rightleftharpoons CO(g)$. When 0.350 mol of O_2 and excess carbon were placed in a 5.00-L container and heated, the equilibrium concentration of CO was found to be 0.060 *M*. What is the equilibrium constant, K_c , for this reaction?

- O 0.010
- O 0.072
- 0.090
- O 0.17
- O 1.2

Practice Quiz: Equilibrium

- 8. At a certain temperature the reaction $CO_2(g) + H_2(g) \Rightarrow CO(g) + H_2O(g)$ has $K_c = 2.50$. If 2.00 mol of carbon dioxide and 1.5 mol of hydrogen are placed in a 5.00 L vessel and equilibrium is established, what will be the concentration of carbon monoxide?
 - © 0.091 *M*
 - 0.191 *M*
 - ⊙ 0.209 *M*
 - 0.913 *M*
 - 1.05 *M*
- 9. When 0.152 mol of solid PH₃BCl₃ is introduced into a 3.0 L container at a certain temperature, 8.44 $\times 10^{-3}$ mol of PH₃ is present at equilibrium:

 $PH_3BCl_3(s) = PH_3(g) + BCl_3(g)$

Construct a reaction table for the process, and use it to calculate K_c at this temperature.

 $Kc = \{[(8.44 X 10E-3)]/3.0\}^2 = 7.9$

10. Consider the following gas-phase equilibrium reaction: $N_2(g) + O_2(g) = 2NO(g), K_c = 4.10 \times 10^{-4} \text{ at } 2000^{\circ}\text{C}$ If 1.0 mol of NO is introduced into a 1.0 L container at 2000°C, what is the concentration of NO when equilibrium is reached?

[NO] = 1.0 X 10⁻² mol L⁻¹