Practice Quiz: Equilibrium

1.	$B_2(g)$ If the rate of K_c unc	the equilibrium reaction shown below. $^{-2}$ $_2$ $_2$ $_3$ $_4$ $_5$ $_5$ $_5$ $_4$ $_5$ $_5$ $_5$ $_4$ $_5$ $_5$ $_5$ $_5$ $_5$ $_4$ $_5$ $_5$ $_5$ $_5$ $_5$ $_5$ $_5$ $_5$
	C	3.50
	C	0.286
	C	5.71×10^{-6}
	0	1.40×10^{-10}
2.	Which of	f the following has an effect on the magnitude of the equilibrium constant? removing products as they are formed
		adding more of a reactant
		adding a catalyst
		increasing the pressure, in a gas-phase reaction
	C	change in temperature
3.	The two	equilibrium constants for the same reaction, K_c and K_p , will always equal one another when all of the reactants and products are gases.
	C	in the reaction equation, the number of moles of gaseous products equals the number of moles of gaseous reactants.
	C	in the reaction equation, the number of moles of gaseous products is greater than the number of moles of gaseous reactants.
	c	in the reaction equation, the number of moles of gaseous products is smaller than the number of moles of gaseous reactants.
	C	in the reaction equation, the total number of moles of reactants equals that of the products.
4.	The reaction quotient, Q_c , for a reaction has a value of 75 while the equilibrium constant, K_c , has a value of 195. Which of the following statements is accurate? The reaction must proceed to the left to establish equilibrium.	
	0	The reaction must proceed to the right to establish equilibrium.
	C	The concentrations of the products will be much smaller than the concentrations of the reactants when the system is at equilibrium.
	C	The concentrations of the products will be about the same as the concentrations of the reactants when the system is at equilibrium.
	C	None of these choices is correct.

5. Select the mass-action expression, Q_c , for the following chemical reaction equation.

 $2C_6H_6(g) + 15O_2(g)$ = $12CO_2(g) + 6H_2O(g)$

- C₆H₆] [O₂]
- $\begin{array}{cc} & \underline{\left[\mathrm{C_6H_6} \right] \left[\mathrm{O_2} \right]} \\ & \underline{\left[\mathrm{CO_2} \right] \left[\mathrm{H_2O} \right]} \end{array}$

- 6. The reaction of nitrogen with oxygen to form nitrogen monxide can be represented by the following equation.

 $N_2(g) + O_2(g) = 2NO(g)$

At 2000°C, the equilibrium constant, K_c , has a value of 4.10×10^{-4} . What is the value of K_p ?

- 2.17×10^{-8}
 - $\sim 4.10 \times 10^{-4}$
 - \sim 7.65 × 10⁻²
 - O 7.75
 - None of these choices is correct.
- 7. At high temperatures, carbon reacts with O_2 to produce CO as follows:

 $2C(s) + O2(g) \rightleftharpoons 2CO(g)$. When 0.350 mol of O_2 and excess carbon were placed in a 5.00-L container and heated, the equilibrium concentration of CO was found to be 0.060 M. What is the equilibrium constant, K_c , for this reaction?

- 0.010
- 0.072
- 0.090
- O.17
- \bigcirc 1.2

Practice Quiz: Equilibrium

- At a certain temperature the reaction $CO_2(g) + H_2(g) = CO(g) + H_2O(g)$ has $K_c = 2.50$. If 2.00 mol of carbon dioxide and 1.5 mol of hydrogen are placed in a 5.00 L vessel and equilibrium is established, what will be the concentration of carbon monoxide?
 - 0.091 *M*
 - O 0.191 M
 - \bigcirc 0.209 M
 - © 0.913 M
 - □ 1.05 M
- 9. When 0.152 mol of solid PH₃BCl₃ is introduced into a 3.0 L container at a certain temperature, 8.44 $\times 10^{-3}$ mol of PH₃ is present at equilibrium: PH₃BCl₃(s) \rightleftharpoons PH₃(g) + BCl₃(g)

Construct a reaction table for the process, and use it to calculate K_c at this temperature.

10. Consider the following gas-phase equilibrium reaction:

 $N_2(g) + O_2(g) = 2NO(g)$, $K_c = 4.10 \times 10^{-4}$ at 2000°C If 1.0 mol of NO is introduced into a 1.0 L container at 2000°C, what is the concentration of NO when equilibrium is reached?