Summer 2012 Exam Two

Chemistry 203

Instructions: There are 25 multiple choice questions each worth 4 points for a total of 100 points. You are required to show evidence of calculations on scratch paper for all numerical problems. You may not leave the room during the exam. PLEASE SILENCE YOUR CELL PHONE! You are required to do your own work - any collaboration is strictly forbidden. Accessing the internet during the exam is strictly forbidden.
I, \qquad (print your name), have read these instructions and I agree to follow them.
signature \qquad
**

1) For the following chemical equilibrium, $K_{\mathrm{p}}=4.6 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$, find the value of K_{C} for this reaction at $25^{\circ} \mathrm{C}$.

$$
2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

A) $K_{\mathrm{C}}=1.9 \times 10^{-15}$
B) $K_{\mathrm{C}}=2.2 \times 10^{-14}$
C) $K_{\mathrm{C}}=1.1 \times 10^{-12}$
D) $K_{\mathrm{C}}=9.4 \times 10-14$
E) $K_{\mathrm{C}}=4.6 \times 10^{-14}$
2) For the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) K_{\mathrm{C}}=0.0454$ at $261^{\circ} \mathrm{C}$. If a vessel is filled with these gases such that the initial concentrations are $\left[\mathrm{PCl}_{5}\right]=0.2 \mathrm{M},\left[\mathrm{PCl}_{3}\right]=0.20 \mathrm{M}$, and $\left[\mathrm{Cl}_{2}\right]=2.25 \mathrm{M}$, in which direction will a reaction occur and why?
A) toward products because $Q=0.56$
B) toward reactants because $Q=1.8$
C) toward products because $Q=2.8$
D) toward reactants because $Q=0.0454$
E) none of these
3) According to Le Chatelier's Principle:
A) an increase in pressure always causes a change in the position of equilibrium for any reaction
B) the greatest yield of ammonia in the exothermic reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ is attained at a high temperature
C) the equilibrium constant is increased for the reaction $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$ if the concentration of A is increased
D) an increase of temperature causes a decrease in the value of the equilibrium constant for an exothermic reaction
E) when an equilibrium system is stressed, the system reacts to offset the stress
4) Equilibrium constant K is constant except when one varies the:
A) concentrations of the reactants
B) temperature of the reaction
C) concentration of the products
D) partial pressures of the reactants
E) K always remains constant
5) Consider the following reaction at a certain temperature.

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

When the initial concentration of $\mathrm{SO}_{3}(\mathrm{~g})$ is 0.128 M , the concentration of oxygen gas at equilibrium is found to be 0.0130 M . Calculate K_{c} for this reaction.
A) $8.45 \times 10-4$
B) 1.62×10^{-2}
C) 7.64×10^{-5}
D) 1.47×10^{-3}
E) None of these
6)Choose the correct expression for Kp for the reaction: $\quad 3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
A) $\frac{\mathrm{P}\left(\mathrm{H}_{2}\right)}{\mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}\right)}$
B) $\frac{\left[\mathrm{Fe}_{3} \mathrm{O}_{4}\right] \mathrm{P}\left(\mathrm{H}_{2}\right)}{[\mathrm{Fe}] \mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}\right)}$
C) $\frac{\left[\mathrm{Fe}_{3} \mathrm{O}_{4}\right]\left[\mathrm{H}_{2}\right]^{4}}{[\mathrm{Fe}]\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}$
D) $\frac{[\mathrm{Fe} 3 \mathrm{O} 4]\left[\mathrm{H}_{2}\right]}{[\mathrm{Fe}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
E) $\frac{\mathrm{P}\left(\mathrm{H}_{2}\right)^{4}}{\mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}\right)^{4}}$
7) A solution has pOH of -0.47 under standard conditions. This means that:
A) the solution has a pH of 13.53
B) the solution has an $\left[\mathrm{OH}^{-}\right]=0.34 \mathrm{M}$
C) the solution has an $\left[\mathrm{OH}^{-}\right]$greater than 10.0 M
D) the solution has an $\left[\mathrm{OH}^{-}\right]=2.95 \mathrm{M}$
E) The solution has an $\left[\mathrm{H}^{+}\right]=2.95 \mathrm{M}$
8) 0.272 g of a monoprotic acid $(\mathrm{Mw}=189 \mathrm{~g} / \mathrm{mol})$ is dissolved in water to produce 25.0 mL of a solution with $\mathrm{pH}=4.93$. Determine the ionization constant of the acid.
A) 4.1×10^{-8}
B) 1.4×10^{-10}
C) 2.1×10^{-4}
D) 2.8×10^{-7}
E) 2.4×10^{-9}
9) Determine the pH of 263 ml of solution which has $\left[\mathrm{NH}_{4} \mathrm{I}\right]=0.300 \mathrm{M} . K_{\mathrm{b}}=1.74 \times 10^{-5}$ for NH_{3} (aq).
A) 2.6
B) 11.4
C) 4.9
D) 9.1
E) 4.6
10) What is the pH of a 0.250 M solution of formic acid? $K_{\mathrm{a}}=1.8 \times 10^{-4}$
A) 11.8
B) 2.2
C) 0.60
D) 5.4
E) 8.6
11) Which among the following pairs is inefficient as buffer pair?
A) ammonium chloride and ammonium hydroxide
B) sodium chloride and sodium hydroxide
C) boric acid and sodium borate
D) potassium carbonate and potassium bicarbonate
E) potassium fluoride and hydrofluoric acid
12) What is the buffer range (2.0 pH units) for a benzoic acid/sodium benzoate buffer? [K a for benzoic acid is 6.3×10^{-5}]
A) $8.8-10.8$
B) $7.4-9.4$
C) 5.3-7.3
D) $4.7-6.7$
E) $3.2-5.2$

Data for question 13:
methyl orange: red at pH < 3.1: orange at pH 3.1-4.4: yellow-orange above pH 4.4
litmus: red at $\mathrm{pH}<4.5$: purple at $\mathrm{pH} 4.5-8.3$: blue above pH 8.3
thymol blue: yellow at $\mathrm{pH}<8.0$: green at $\mathrm{pH} 8.0-9.6$: blue above pH 9.6
trinitrobenzene: colorless at $\mathrm{pH}<12$: yellow at $\mathrm{pH} 12.0-1$: orange above pH 14.0

13) Which of the pH indicators from the list above would be most appropriate for the titration of 0.30 M acetic $\operatorname{acid}\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ with 0.15 M sodium hydroxide?
A) methyl orange
B) litmus
C) thymol blue
D) trinitrobenzene
E) Both thymol blue and litmus can be used.
14) Determine the $\left[\mathrm{F}^{-}\right]$of the following solution. Initial concentrations are given.
$[\mathrm{HF}]=1.296 \mathrm{M},[\mathrm{NaF}]=1.045 \mathrm{M}, K_{\mathrm{a}}$ for HF is 6.6×10^{-4}
A) 1.046 M
B) 2.344 M
C) $5.3 \times 10^{-4} \mathrm{M}$
D) $8.2 \times 10^{-4} \mathrm{M}$
E) 0.251 M
15) If some $\mathrm{NH}_{4} \mathrm{Cl}$ is added to an aqueous solution of NH_{3} :
A) the pH of the solution will increase
B) the pH of the solution will decrease
C) the solution will not have pH
D) the pH of the solution will not change
E) $\mathrm{NH}_{4} \mathrm{Cl}$ cannot be added to NH_{3}
16) The molar solubility of $\mathrm{SrSO}_{4}\left(K_{\mathrm{Sp}}=7.6 \times 10^{-7}\right)$ is:
A) $2.8 \times 10^{-5} \mathrm{M}$
B) $7.6 \times 10^{-7} \mathrm{M}$
C) $8.7 \times 10^{-8} \mathrm{M}$
D) $8.7 \times 10^{-4} \mathrm{M}$
E) $9.1 \times 10^{-3} \mathrm{M}$
17) The solubility of a salt MX_{2} with a molar mass of $114 \mathrm{~g} /$ mole is $3.42 \mathrm{~g} /$ liter. Calculate the $K_{\text {sp }}$.
A) 2.70×10^{-5}
B) 1.08×10^{-4}
C) 9.00×10^{-4}
D) 2.25×10^{-4}
E) 6.75×10^{-8}
18) A solution contains $\left[\mathrm{Ba}^{2+}\right]=5.0 \times 10^{-5} \mathrm{M},\left[\mathrm{Ag}^{+}\right]=3.0 \times 10^{-5} \mathrm{M}$, and $\left[\mathrm{Zn}^{2+}\right]=2.0 \times 10^{-7} \mathrm{M}$. Sodium oxalate is slowly added so that $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$ increases.

$$
\begin{array}{llll}
\text { Salt } & \mathrm{BaC}_{2} \mathrm{O}_{4} & \mathrm{ZnC}_{2} \mathrm{O}_{4} & \mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \\
K_{\text {sp }} & 1.5 \times 10^{-8} & 1.35 \times 10^{-9} & 1.1 \times 10^{-11}
\end{array}
$$

What is the concentration of the first cation to precipitate when the second cation just begins to precipitate?
A) 1.3×10^{-6}
B) 2.2×10^{-6}
C) 5.0×10^{-5}
D) 1.35×10^{-9}
E) 1.1×10^{-11}
19) Which of the following salts, each of which has a solubility product equal to 1.0×10^{-6}, has the greatest molar solubility?
A) MX
B) MX_{2}
C) MX_{3}
D) $\mathrm{M}_{2} \mathrm{X}$
E) They are all the same
20) A homeowner in Boston becomes concerned that there may be appreciable amounts of lead in her drinking water due to 150 -year old water pipes in her house. Consequently, she takes a sample of her drinking water in to be analyzed. The laboratory technician, who is new on the job, has been told to analyze by precipitating the lead ion as the iodide ($K_{\mathrm{Sp}}=7.1 \times 10^{-9}$ for PbI_{2}) by slowly adding small portions of 1.00 M NaI solution.

If we assume that the concentration of lead in the solution is $1.00 \mathrm{mg} / \mathrm{liter}$ or approximately $4.8 \times 10^{-6} \mathrm{M}$ (this would be 1.0 part per million) is it possible to detect the lead in the drinking water by adding a total of no more than 10.0 mL of NaI solution to a 100 mL sample of drinking water? You must of course consider dilution effects. What is Q ?
A) yes, $Q=4.0 \times 10^{-7}$
B) yes, $Q=3.6 \times 10^{-8}$
C) no, $Q=1.6 \times 10^{-13}$
D) no, $Q=3.6 \times 10^{-8}$
E) no, $Q=4.0 \times 10^{-7}$
21. Calculate the solubility of magnesium sulfate, MgSO_{4}, when placed into a $0.10 \mathrm{M} \mathrm{MgCl}_{2}$ solution. $\mathrm{K}_{\text {sp }}$ for $\mathrm{MgSO}_{4}=5.9 \times 10^{-3}$
A. $4.2 \times 10^{-2} \mathrm{M}$
B. $5.9 \times 10^{-2} \mathrm{M}$
C. $7.7 \times 10^{-2} \mathrm{M}$
D. $3.5 \times 10^{-5} \mathrm{M}$
E. $3.5 \times 10^{-6} \mathrm{M}$
22) For the reaction $2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) K_{\mathrm{p}}$ equals \qquad .
A) K_{C}
B) $\mathrm{RT} / K_{\mathrm{C}}$
C) $K_{\mathrm{C}}(\mathrm{RT})$
D) $K_{\mathrm{C}} / \mathrm{RT}$
E) $K_{\mathrm{C}}(\mathrm{RT})^{2}$
23) The following compounds are available as 0.10 M aqueous solutions: pyridine $\left(\mathrm{pK}_{\mathrm{b}}=8.82\right)$, triethylamine $(\mathrm{pK} \mathrm{b}=3.25), \mathrm{HClO}_{4}$, NaOH , phenol ($\mathrm{pK}=9.96$), $\mathrm{HClO}\left(\mathrm{pK}_{\mathrm{a}}=7.54\right)$, and $\mathrm{NH}_{3}\left(\mathrm{pK}_{\mathrm{b}}=4.74\right)$. Identify two solutions that could be used to prepare a buffer with a pH of approximately 5 .
A) pyridine and HClO_{4}
B) triethyamine and HClO_{4}
C) phenol and NaOH
D) HClO and NaOH
E) None of these will work
24) How will addition of sodium chloride affect the pH of a HCl solution?
A) It will lower the pH .
B) The pH will not change.
D) The pH cannot be measured.
E) It will raise the pH .
C) The solution becomes hotter.
25) Consider the reaction:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Choose the pair of substances that are both bases in the reaction.
A) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$
B) $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
C) $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$
D) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
E) $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

Bonus:

The titration curve for 10.0 mL of $0.100 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ with $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ is given below.

Estimate the pK_{a} of $\mathrm{H}_{3} \mathrm{PO}_{4}$.

