Pre	actice Quiz - Phases	and Intermolecular	Forces	Name	
1.	3 points) Diethyl ether, used as a solvent for extraction of organic compounds from aqueous solutions, has a nigh vapor pressure which makes it a potential fire hazard in laboratories in which it is used. How much energy is released when 100.0 g is cooled from 53.0° C to 10.0° C? Boiling point: 34.5° C Heat of vaporization: 351 J/g Specific heat capacity, $(CH_3)_2O(I)$: $3.74 \text{ J/(g} \cdot \text{K)}$ Specific heat capacity, $(CH_3)_2O(g)$: $2.35 \text{ J/(g} \cdot \text{K)}$				
	A. 10.1 kJ	B. 13.1 kJ	C. 16.1 kJ	D. 45.2 kJ	E. 48.6 kJ
2.	2. (3 points) A 5.00 g sample of water vapor, initially at 155°C is cooled at atmospheric pressure, producing ice at -55°C. Calculate the amount of heat energy lost by the water sample in this process, in kJ. Use the following data: specific heat capacity of ice is 2.09 J/g \cdot K; specific heat capacity of liquid water is 4.18 J/g \cdot K; specific heat capacity of water vapor is 1.84 J/g \cdot K; heat of fusion of ice is 336 J/g; heat of vaporization of water is 2260 J/g.				
	A. 16.1 kJ	B. 10.2 kJ	C. 5.4 kJ	D. 3.2 kJ	E. 15.1 kJ
	The rest of the questions are each 2 points.				
3.	Neon atoms are att A. dipole-dipole for D. covalent bondin		C. hydrogen bo	C. hydrogen bonding.	
4.	Ammonia's unusually high melting point is the result of A. dipole-dipole forces. B. London dispersion forces. D. covalent bonding. E. ionic bonding.			C. hydrogen bonding.	
5.	h hydrogen iodide are the most important intermolecular forces. A. dipole-dipole forces B. London dispersion forces C. hydrogen bonding E. polar covalent bonds				
6.	What word is used to	o describe a direct p	phase change from	n the solid phase to th	ne gas phase?
7.	Why is carbon dioxid	de a gas at room ter	mperature wherea	s silicon dioxide is a sc	olid (sand)?
8.	What conditions hav	ve to exist for hydrog	en bonding to tak	e place between mo	olecules?

9. Considering the three phases: gas, liquid and solid - which phase has the most energy and why?