Practice Quiz: Gas Laws

If this were an actual quiz, each problem would be worth 4 points for a total of 20 points.

1. Calculate the density in g / L of gaseous SF_{6} at $50.0^{\circ} \mathrm{C}$ and 650 . torr. (You should be able to calculate the density of any gas at any temperature and pressure assuming ideal gas behavior.)
2. Aluminum metal shavings $(10.0 \mathrm{~g})$ are placed in $100 . \mathrm{mL}$ of 6.00 M hydrochloric acid. What is the maximum volume of hydrogen, measured at STP, which can be produced? $2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
3. A 20.0-L container holds 15.3 mol of Cl_{2} gas at $227^{\circ} \mathrm{C}$.
a. Calculate the pressure in atmospheres, assuming ideal behavior.
b. Calculate the pressure in atmospheres, assuming van der Waals behavior. The van der Waals constants for Cl_{2} are $a=6.49 \mathrm{~atm}^{2} \mathrm{~L}^{2} / \mathrm{mol}^{2}$ and $b=0.0562 \mathrm{~L} / \mathrm{mol}$. The van der Waals gas equation is:

$$
\left(p+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

4. A weather balloon was initially at a pressure of 0.950 atm , and its volume was 35.0 L . The pressure decreased to 0.750 atm, without loss of gas or change in temperature. What was the change in the volume?
5. Small quantities of hydrogen can be prepared by the addition of hydrochloric acid to zinc. A sample of 195 mL of hydrogen was collected over water at $25^{\circ} \mathrm{C}$ and 753 torr. What mass of hydrogen was collected? ($P_{\text {water }}=24$ torr at $25^{\circ} \mathrm{C}$)
