# Concentration of Solutions

There are three principal ways to express solution concentration in chemistry-percentage by mass, molarity, and molality.

The following table compares these three ways of stating solution concentration. Examining the method of preparation of the three types may help you understand the differences among them.

|            | Symbol | Meaning                                    | How to prepare                                                                                    |
|------------|--------|--------------------------------------------|---------------------------------------------------------------------------------------------------|
| Percentage | %      | Grams solute<br>per 100 g of<br>solution   | <b>5%:</b> Dissolve 5 g of solute in 95 g solvent.                                                |
| Molarity   | Μ      | Moles solute<br>per liter of<br>solution   | <b>5 M:</b> Dissolve 5 mol<br>of solute in solvent<br>and add solvent to<br>make 1 L of solution. |
| Molality   | т      | Moles solute<br>per kilogram<br>of solvent | <b>5 m:</b> Dissolve 5 mol<br>of solute in 1 kg<br>of solvent.                                    |

### **PERCENTAGE CONCENTRATION**

You will find percentages of solutes stated on the labels of many commercial products, such as household cleaners, liquid pesticide solutions, and shampoos. If your sink becomes clogged, you might buy a bottle of drain opener whose label states that it is a 2.4% sodium hydroxide solution. This means that the bottle contains 2.4 g of NaOH for every 100 g of solution.

Computing percentage concentration is very much like computing percentage composition (see Chapter 6). Both involve finding the percentage of a single component of a multicomponent system. In each type of percentage calculation, the mass of the important component (in percentage concentration, the solute) is divided by the total mass of the system and multiplied by 100 to yield a percentage. In percentage concentration, the solute is the important component, and the total mass of the system is the mass of the solute plus the mass of the solvent.



#### CHEMFILE MINI-GUIDE TO PROBLEM SOLVING 1 2 3 Mass of water in g + Mass of $\overline{K_2}SO_4$ in g = Mass of $K_2SO_4$ solution in g solute mass percentage concentration = $\times 100$ solution mass 4 Percentage $K_2SO_4$ by mass g K<sub>2</sub>SO<sub>4</sub> $\frac{1}{g \underset{given}{K_2 SO_4} + g \underset{given}{H_2 O}} \times 100$ percentage concentration = -3. COMPUTE percentage concentration = $\frac{0.49 \text{ g } \text{K}_2 \text{SO}_4}{0.49 \text{ g } \text{K}_2 \text{SO}_4 + 12.70 \text{ g } \text{H}_2 \text{O}} \times 100 = 3.7\% \text{ K}_2 \text{SO}_4$ 4. EVALUATE • Are the units correct? Yes; percentage K<sub>2</sub>SO<sub>4</sub> was required. • Is the number of significant Yes; the number of significant figfigures correct? ures is correct because the data had a minimum of two significant figures. • Is the answer reasonable? Yes; the computation can be approximated as $0.5/13 \times 100 = 3.8\%$ . PRACTICE **1.** What is the percentage concentration of 75.0 g of ethanol dissolved in 500.0 g of water? ans: 13.0% ethanol **2.** A chemist dissolves 3.50 g of potassium iodate and 6.23 g of potassium hydroxide in 805.05 g of water. What is the percentage ans: 0.430% KIO<sub>3</sub> concentration of each solute in the solution? 0.765% KOH **3.** A student wants to make a 5.00% solution of rubidium chloride using 0.377 g of the substance. What mass of water will be needed to make the solution? ans: 7.16 g H<sub>2</sub>O **4.** What mass of lithium nitrate would have to be dissolved in 30.0 g of water in order to make an 18.0% solution? ans: 6.59 g LiNO<sub>3</sub>

#### MOLARITY

Molarity is the most common way to express concentration in chemistry. Molarity is the number of moles of solute per liter of solution and is given as a number followed by a capital M. A 2 M solution of nitric acid contains 2 mol of HNO<sub>3</sub> per liter of solution. As you know, substances react in mole ratios. Knowing the molar concentration of a solution allows you to measure a number of moles of a dissolved substance by measuring the volume of solution.



**General Plan for Solving Molarity Problems** 

#### SAMPLE PROBLEM 2

What is the molarity of a solution prepared by dissolving 37.94 g of potassium hydroxide in some water and then diluting the solution to a volume of 500.00 mL?

#### SOLUTION

- **1.** ANALYZE
  - *What is given in the the problem?* the
  - What are you asked to find?

the mass of the solute, KOH, and the final volume of the solution

the concentration of the solution expressed as molarity



|                                          | 0.6762 mol<br>0.500 00 L s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\text{KOH}}{\text{olution}} = 1.352 \text{ M}$                                                              |                                                                                          |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| <b>4.</b> EV.                            | ALUATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |                                                                                          |
| • 1                                      | Are the units correct?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes; units canceled KOH per liter of sc                                                                            | to give moles<br>lution.                                                                 |
| • 1<br>f                                 | 's the number of significant<br>igures correct?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes; the number of<br>ures is correct beca<br>a minimum of four<br>figures.                                        | significant fig-<br>use the data had<br>significant                                      |
| • ]                                      | 's the answer reasonable?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes; note that 0.676<br>imately 2/3 mol and<br>1/2 L. Thus, the cal<br>estimated as (2/3)/(<br>which is very close | 62 mol is approx<br>d 0.500 00 L is<br>culation can be<br>(1/2) = 4/3,<br>to the result. |
|                                          | TICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |                                                                                          |
| to<br>2. V<br>d<br>w<br>th<br>3. V       | 3500.0 mL. What is the molarity of a salt s issolving 280.0 mg of NaCl i vater? Assume the final volum ne volume of the water. What is the molarity of a solution of the salt of the | solution made by<br>n 2.00 mL of<br>ne is the same as<br>tion that contains                                        | <i>ans:</i> 0.2106 N<br><i>ans:</i> 2.40 M                                               |
| 3                                        | 90.0 g of acetic acid, $CH_3CO$ nough acetone to make 1000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OH, dissolved in<br>.0 mL of solution?                                                                             | ans: 6 191 M                                                                             |
| e                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | uns. 0.4741                                                                              |
| SAM<br>Sam<br>Sol                        | PLE PROBLEM 3<br>analytical chemist wants to<br>ution of sodium hydroxide.<br>emist need to make this solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o make 750.0 mL of<br>What mass of NaO<br>Ition?                                                                   | a 6.00 M<br>H will the                                                                   |
| SAM<br>An<br>sol<br>cho<br>SOLU          | PLE PROBLEM 3<br>analytical chemist wants to<br>ution of sodium hydroxide.<br>emist need to make this solu<br>TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o make 750.0 mL of<br>What mass of NaO<br>ition?                                                                   | a 6.00 M<br>H will the                                                                   |
| SAM<br>An<br>sol<br>cho<br>SOLU<br>1. AN | PLE PROBLEM 3<br>analytical chemist wants to<br>ution of sodium hydroxide.<br>emist need to make this solu<br>TION<br>IALYZE<br>What is given in the<br>problem?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o make 750.0 mL of<br>What mass of NaO<br>Ition?<br>the identity of the s<br>volume of solution<br>of the solution | a 6.00 M<br>H will the<br>olute, the total<br>, and the molarity                         |

|                                 | ltems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | Data                                                                             |                                                        |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------|
| -                               | Mass of solute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | <b>?</b> g NaOH                                                                  | -                                                      |
|                                 | Molar mass of solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ute                                      | 40.00 g/mol                                                                      | -                                                      |
| -                               | Moles of solute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | ? mol NaOH                                                                       | -                                                      |
| -                               | Volume of solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | า                                        | 750.0 mL                                                                         | -                                                      |
| -                               | Concentration (mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olarity)                                 | 6.00 M                                                                           | -                                                      |
| <b>2.</b> PLAN                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                  |                                                        |
| What sta<br>calculat<br>needed? | eps are needed to<br>te the mass of solute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Determ<br>needed<br>and con<br>ing by    | nine the amount is<br>for the solution<br>nvert to grams by<br>the molar mass of | in moles<br>required,<br>y multiply-<br>of the solute. |
| <b>3.</b> COMPUT                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                  |                                                        |
| Mola<br>NaOH s                  | rity of × Volum<br>solution × solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e of Na<br>tion in I                     | $\mathcal{OH}_{\mathcal{L}} = \frac{\text{Amount}}{\text{in}}$                   | t of NaOH<br>mol                                       |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | multipl<br>conver<br>factor              | ly by the<br>sion<br><u>1 L</u><br>1000 mL                                       | multiply by the<br>molar mass of<br>NaOH               |
|                                 | Vo<br>NaOH se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lume of olution in                       | Mass o<br>n mL i                                                                 | of NaOH<br>n g                                         |
|                                 | $^{given}_{mL 	ext{ solution } 	imes}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1 \text{ L}}{1000 \text{ m}}$     | $\frac{1}{L} = L$ solution                                                       |                                                        |
| $\frac{n}{I}$                   | $\frac{1}{1}$ $\frac{1}$ | $n 	imes rac{40.0}{1 r}$                | $\frac{r mass of NaOH}{\text{nol NaOH}} = g$                                     | NaOH                                                   |
| 75                              | $50.0 \text{ mH}$ solution $\times -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 L<br>000 mŁ                            | $= 0.7500 \mathrm{L}\mathrm{sol}$                                                | lution                                                 |
| 6.00 mol<br>L_solut             | $\frac{\text{NaOH}}{\text{tion}} \times 0.7500 \text{ L-sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | olution >                                | ≺ 40.00 g NaOF<br>1 mol NaOH                                                     | <u>I</u>                                               |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | =                                                                                | 180. g NaOH                                            |
| 4. EVALUATE                     | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                  |                                                        |
| • Are the                       | units correct?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes; ur<br>NaOH                          | nits canceled to g                                                               | give grams of                                          |
| • Is the nu<br>figures of       | umber of significant<br>correct?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes; th<br>ures is<br>a minin<br>figures | e number of sigr<br>correct because<br>mum of three sig                          | hificant fig-<br>the data had<br>nificant              |

| • Is the answer reasonable? | Yes; the calculation can be esti- |
|-----------------------------|-----------------------------------|
|                             | mated as $(3/4) \times (6)(40) =$ |
|                             | $(3/4) \times 240 = 180.$         |

### PRACTICE

| 1. | What mass of glucose, $C_6H_{12}O_6$ , would be |      |                                 |
|----|-------------------------------------------------|------|---------------------------------|
|    | required to prepare $5.000 \times 10^3$ L of a  |      |                                 |
|    | 0.215 M solution?                               | ans: | $1.94 \times 10^{5} \mathrm{g}$ |
| 2. | What mass of magnesium bromide would be         |      |                                 |
|    | required to prepare 720. mL of a 0.0939 M       |      |                                 |
|    | aqueous solution?                               | ans: | 12.4 g                          |
| 3. | What mass of ammonium chloride is dis-          |      |                                 |
|    | solved in 300. mL of a 0.875 M solution?        | ans: | 14.0 g                          |

#### MOLALITY

Molality is the amount in moles of solute per kilogram of solvent and is given by a number followed by an italic lowercase m. A 5 m aqueous solution of glucose contains 5 mol of  $C_6H_{12}O_6$  per kilogram of water. Molal concentration is important primarily in working with colligative properties of solutions, which you will do in Chapter 16.

#### **General Plan for Solving Molality Problems**



Copyright  $\circledcirc$  by Holt, Rinehart and Winston. All rights reserved.

#### SAMPLE PROBLEM 4

Determine the molal concentration of a solution containing 81.3 g of ethylene glycol, HOCH<sub>2</sub>CH<sub>2</sub>OH, dissolved in 166 g of water.

#### **SOLUTION**

**1.** ANALYZE

| • What is given in the problem? | the mass of ethylene glycol dis-<br>solved, and the mass of the solvent,<br>water |
|---------------------------------|-----------------------------------------------------------------------------------|
| • What are you asked to find?   | the molal concentration of the solution                                           |

| Items                    | Data                        |
|--------------------------|-----------------------------|
| Mass of solute           | 81.3 g ethylene glycol      |
| Molar mass of solute     | 62.08 g/mol ethylene glycol |
| Moles of solute          | ? mol ethylene glycol       |
| Mass of solvent          | 166 g H <sub>2</sub> O      |
| Concentration (molality) | <b>?</b> m                  |

#### **2.** *PLAN*

• What steps are needed to calculate the molal concentration of the ethylene glycol solution? Determine the amount of solute in moles and the mass of solvent in kilograms; calculate the moles of solute per kilogram of solvent.



$$g \overset{given}{H_2O} \times \frac{1 \text{ kg}}{1000 \text{ g}} = \text{kg H}_2O$$

$$\frac{\text{calculated above}}{\text{kg H}_2\text{O}_2} = m \text{ C}_2\text{H}_6\text{O}_2 \text{ solution}$$

$$\frac{\text{calculated above}}{\text{calculated above}}$$

**3.** *COMPUTE* 

$$81.3 \text{ g-}C_2H_6O_2 \times \frac{1 \text{ mol } C_2H_6O_2}{62.08 \text{ g-}C_2H_6O_2} = 1.31 \text{ mol } C_2H_6O_2$$

$$166 \text{ g } H_2O \times \frac{1 \text{ kg}}{1000 \text{ g}} = 0.166 \text{ kg } H_2O$$

$$\frac{1.31 \text{ mol } C_2H_6O_2}{0.166 \text{ kg } H_2O} = 7.89 \text{ m}$$

**4.** EVALUATE

| • Are the units correct?                        | Yes; units canceled to give moles $C_2H_6O_2$ per kilogram of solvent.                                                                                                                 |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Is the number of significant figures correct? | Yes; the number of significant fig-<br>ures is correct because the data had a<br>minimum of three significant figures.                                                                 |
| • Is the answer reasonable?                     | Yes; because 1.31 mol is approximately 4/3 mol and 0.166 kg is approximately 1/6 kg, the calculation can be estimated as $(4/3)/(1/6) = 24/3 = 8$ , which is very close to the result. |

### PRACTICE

| 1. | Determine the molality of a solution of 560 g of acetone, $CH_3COCH_3$ , in 620 g of                                                                                                                                    |      |                                       |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------|
|    | water.                                                                                                                                                                                                                  | ans: | 16 <i>m</i>                           |
| 2. | What is the molality of a solution of 12.9 g of fructose, $C_6H_{12}O_6$ , in 31.0 g of water?                                                                                                                          | ans: | 2.31 m                                |
| 3. | How many moles of 2-butanol,<br>CH <sub>3</sub> CHOHCH <sub>2</sub> CH <sub>3</sub> , must be dissolved<br>in 125 g of ethanol in order to produce<br>a 12.0 $m$ 2-butanol solution? What mass<br>of 2-butanol is this? | ans: | 1.50 mol 2-butanol<br>111 g 2-butanol |

#### ADDITIONAL PROBLEMS

**1.** Complete the table below by determining the missing quantity in each example. All solutions are aqueous. Any quantity that is not applicable to a given solution is marked NA.

| Solution made                                                                     | Mass<br>of solute<br>used                                | Quantity<br>of solution<br>made | Quantity<br>of solvent<br>used |
|-----------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|--------------------------------|
| <b>a.</b> 12.0% KMnO <sub>4</sub>                                                 | <b>?</b> g KMnO <sub>4</sub>                             | 500.0 g                         | <b>?</b> g H₂O                 |
| <b>b.</b> 0.60 M BaCl <sub>2</sub>                                                | <b>?</b> g BaCl <sub>2</sub>                             | 1.750 L                         | NA                             |
| <b>c.</b> 6.20 <i>m</i> glycerol,<br>HOCH <sub>2</sub> CHOHCH <sub>2</sub> OH     | ? g glycerol                                             | NA                              | 800.0 g H <sub>2</sub> O       |
| <b>d. ?</b> M K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                       | 12.27 g<br>K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> | 650. mL                         | NA                             |
| e. ? <i>m</i> CaCl <sub>2</sub>                                                   | 288 g CaCl <sub>2</sub>                                  | NA                              | 2.04 kg H <sub>2</sub> O       |
| f. 0.160 M NaCl                                                                   | <b>?</b> g NaCl                                          | 25.0 mL                         | NA                             |
| <b>g.</b> 2.00 <i>m</i> glucose,<br>C <sub>6</sub> H <sub>12</sub> O <sub>6</sub> | ? g glucose                                              | ? g solution                    | 1.50 kg H₂O                    |

- **2.** How many moles of  $H_2SO_4$  are in 2.50 L of a 4.25 M aqueous solution?
- **3.** Determine the molal concentration of 71.5 g of linoleic acid,  $C_{18}H_{32}O_2$ , in 525 g of hexane,  $C_6H_{14}$ .
- **4.** You have a solution that is 16.2% sodium thiosulfate,  $Na_2S_2O_3$ , by mass.
  - **a.** What mass of sodium thiosulfate is in 80.0 g of solution?
  - **b.** How many moles of sodium thiosulfate are in 80.0 g of solution?
  - **c.** If 80.0 g of the sodium thiosulfate solution is diluted to 250.0 mL with water, what is the molarity of the resulting solution?
- **5.** What mass of anhydrous cobalt(II) chloride would be needed in order to make 650.00 mL of a 4.00 M cobalt(II) chloride solution?
- **6.** A student wants to make a 0.150 M aqueous solution of silver nitrate,  $AgNO_3$  and has a bottle containing 11.27 g of silver nitrate. What should be the final volume of the solution?
- **7.** What mass of urea, NH<sub>2</sub>CONH<sub>2</sub>, must be dissolved in 2250 g of water in order to prepare a 1.50 *m* solution?
- **8.** What mass of barium nitrate is dissolved in 21.29 mL of a 3.38 M solution?

| 9.<br>10.<br>11.<br>12.<br>13.                    | Describe what you would do to prepare 100.0 g of a 3.5% solution<br>of ammonium sulfate in water.<br>What mass of anhydrous calcium chloride should be dissolved in<br>590.0 g of water in order to produce a 0.82 <i>m</i> solution?<br>How many moles of ammonia are in 0.250 L of a 5.00 M aqueous<br>ammonia solution? If this solution were diluted to 1.000 L, what<br>would be the molarity of the resulting solution?<br>What is the molar mass of a solute if 62.0 g of the solute in 125 g of<br>water produce a 5.3 <i>m</i> solution?<br>A saline solution is 0.9% NaCl. What masses of NaCl and water |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.<br>11.<br>12.<br>13.                          | <ul> <li>What mass of anhydrous calcium chloride should be dissolved in 590.0 g of water in order to produce a 0.82 <i>m</i> solution?</li> <li>How many moles of ammonia are in 0.250 L of a 5.00 M aqueous ammonia solution? If this solution were diluted to 1.000 L, what would be the molarity of the resulting solution?</li> <li>What is the molar mass of a solute if 62.0 g of the solute in 125 g of water produce a 5.3 <i>m</i> solution?</li> <li>A saline solution is 0.9% NaCl. What masses of NaCl and water</li> </ul>                                                                            |
| <ol> <li>11.</li> <li>12.</li> <li>13.</li> </ol> | How many moles of ammonia are in 0.250 L of a 5.00 M aqueous<br>ammonia solution? If this solution were diluted to 1.000 L, what<br>would be the molarity of the resulting solution?<br>What is the molar mass of a solute if 62.0 g of the solute in 125 g of<br>water produce a 5.3 <i>m</i> solution?<br>A saline solution is 0.9% NaCl. What masses of NaCl and water                                                                                                                                                                                                                                          |
| 12.<br>13.                                        | What is the molar mass of a solute if 62.0 g of the solute in 125 g of water produce a 5.3 <i>m</i> solution?<br>A saline solution is 0.9% NaCl. What masses of NaCl and water                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13.                                               | A saline solution is 0.9% NaCl. What masses of NaCl and water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                   | would be required to prepare 50. L of this saline solution? Assume that the density of water is 1.000 g/mL and that the NaCl does not add to the volume of the solution.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14.                                               | A student weighs an empty beaker on a balance and finds its mass to<br>be 68.60 g. The student weighs the beaker again after adding water<br>and finds the new mass to be 115.12 g. A mass of 4.08 g of glucose<br>is then dissolved in the water. What is the percentage concentration<br>of glucose in the solution?                                                                                                                                                                                                                                                                                             |
| 15.                                               | The density of ethyl acetate at 20°C is 0.902 g/mL. What volume of ethyl acetate at 20°C would be required to prepare a 2.0% solution of cellulose nitrate using 25 g of cellulose nitrate?                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16.                                               | Aqueous cadmium chloride reacts with sodium sulfide to produce<br>bright-yellow cadmium sulfide. Write the balanced equation for this<br>reaction and answer the following questions.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   | <b>a.</b> How many moles of CdCl <sub>2</sub> are in 50.00 mL of a 3.91 M solution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | <b>b.</b> If the solution in (a) reacted with excess sodium sulfide, how many moles of CdS would be formed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                   | <b>c.</b> What mass of CdS would be formed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17.                                               | What mass of $H_2SO_4$ is contained in 60.00 mL of a 5.85 M solution of sulfuric acid?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 18.                                               | A truck carrying 22.5 kL of 6.83 M aqueous hydrochloric acid used<br>to clean brick and masonry has overturned. The authorities plan to<br>neutralize the acid with sodium carbonate. How many moles of HCl<br>will have to be neutralized?                                                                                                                                                                                                                                                                                                                                                                        |
| 19.                                               | A chemist wants to produce 12.00 g of barium sulfate by reacting a $0.600 \text{ M BaCl}_2$ solution with excess $H_2SO_4$ , as shown in the reaction below. What volume of the $BaCl_2$ solution should be used?                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                   | $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

- **20.** Many substances are hydrates. Whenever you make a solution, it is important to know whether or not the solute you are using is a hydrate and, if it is a hydrate, how many molecules of water are present per formula unit of the substance. This water must be taken into account when weighing out the solute. Something else to remember when making aqueous solutions from hydrates is that once the hydrate is dissolved, the water of hydration is considered to be part of the solvent. A common hydrate used in the chemistry laboratory is copper sulfate pentahydrate, CuSO<sub>4</sub> 5H<sub>2</sub>O. Describe how you would make each of the following solutions using CuSO<sub>4</sub> 5H<sub>2</sub>O. Specify masses and volumes as needed.
  - **a.** 100. g of a 6.00% solution of  $CuSO_4$
  - **b.** 1.00 L of a 0.800 M solution of  $CuSO_4$
  - c. a 3.5 m solution of CuSO<sub>4</sub> in 1.0 kg of water
  - **21.** What mass of calcium chloride hexahydrate is required in order to make 700.0 mL of a 2.50 M solution?
  - **22.** What mass of the amino acid arginine,  $C_6H_{14}N_4O_2$ , would be required to make 1.250 L of a 0.00205 M solution?
  - **23.** How much water would you have to add to 2.402 kg of nickel(II) sulfate hexahydrate in order to prepare a 25.00% solution?
  - 24. What mass of potassium aluminum sulfate dodecahydrate, KAl(SO<sub>4</sub>)<sub>2</sub> 12H<sub>2</sub>O, would be needed to prepare 35.00 g of a 15.00% KAl(SO<sub>4</sub>)<sub>2</sub> solution? What mass of water would be added to make this solution?

Copyright © by Holt, Rinehart and Winston. All rights reserved