Gases: Outline

Pressure and Units of Pressure

atmospheres
pounds per inch (psi)
mm Hg ortor
Pascals ($1.00 \mathrm{~atm}=101.3 \mathrm{kPa}$)

Gas Laws

Boyle's Law ($\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ at constant Tand constant n)
Charles' Law ($\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$ at constant P and constant n - Tmust be in Kelvin)
Gay-Lussac's Law ($\mathrm{P}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} / \mathrm{T}_{2}$ at constant V and constant n - Tmust be in Kelvin)
Combined GasLaw ($\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2}$ at constant n - Tmust be in Kelvin)
Avogadro's Law
Equal volumes of any two gases at the same temperature and pressure conta in the same number of molecules.
Standard Temperature and Pressure (273.15 K and 1.00 atm)
STP ($22.4 \mathrm{~L} / \mathrm{mol}$)
The Ideal Gas Law $(P V=n R T)$
$\mathrm{R}=0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$)
Density of a Gas
$D=P M_{m} / R T$

Stoichiometry

Gas Mixtures

Dalton's Law of Partial Pressures ($\mathrm{P}_{\text {tot }}=\mathrm{Pa}_{\mathrm{a}}+\mathrm{P}_{\mathrm{b}}+\mathrm{P}_{\mathrm{c}}+\ldots$)
Mole fraction
$\chi_{\mathrm{A}}=$ Mole fraction of $\mathrm{A}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\text {tot }}}=\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\text {tot }}}$

Collecting Gases Over Water

Table $\mathbf{5 . 6}$ Vapor Pressure of Water at Various Temperatures			
Temperature (${ }^{\circ} \mathbf{C}$)	Pressure $\mathbf{(m m H g})$	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Pressure $(\mathbf{m m H g})$
0	4.6	27	26.7
5	6.5	28	28.3
10	9.2	29	30.0
11	9.8	30	31.8
12	10.5	35	42.2
13	11.2	40	55.3
14	12.0	45	71.9
15	12.8	50	92.5
16	13.6	55	118.0
17	14.5	60	149.4
18	15.5	65	187.5
19	16.5	70	233.7
20	17.5	75	289.1
21	18.7	80	355.1
22	19.8	85	433.6
23	21.1	90	525.8
24	22.4	95	633.9
25	23.8	100	760.0
26	25.2	105	906.1

Molecular Speeds: Diffusion and Effusion

Graham's Law

$$
u=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}_{\mathrm{m}}}}
$$

$$
\frac{\text { Rate of effusion of gas "A" }}{\text { Rate of effusion of gas "B" }}=\sqrt{\frac{M_{m} \text { of Gas } B}{M_{m} \text { of gas } A}}
$$

The Kinetic-Molec ular Theory of Gases

Volume of particles is negligible
Particles are in constant motion
No inherent attractive or repulsive forces
The average kinetic energy of a collection of particles is proportional to the temperature (K)

Real Gases: van der Waals equation

$\left(P+\frac{\mathrm{n}^{2} a}{\mathrm{~V}^{2}}\right)(V-n b)=n R T$
a corrects for interaction between atoms
b corrects for volume occupied by the gas molecules

You will need to have the following operational skills:

\square Converting units of pressure.

- Using the empinical gas laws.
\square
Deriving empiric al gas laws from the ideal gas law.
Using the ideal gaslaw.Relating gas density and molecular weight.Solving stoic hiometry problems involving gases.
- Calculating partial pressures and mole fractions.
- Calculating the amount of gas collected over water.
- Calculating the msspeed of gasmolecules.
- Calculating the ratio of effusion rates of gases.
\square Using the van der Waals equation.

